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Abstract 

To address the ever increasing quantity of scrap tires produced in the U.S. a study is 

conducted on the use of crumb rubber in concrete for enhancement of structures against 

blast effects.  Crumb Rubber Concrete (CRC) is produced by replacing a volume 

percentage of the traditional coarse and/or fine aggregate with crumb rubber particles.  

Crumb rubber is produced in various gradations from used vehicle tires.  Part 1 of the 

research program characterizes the mechanical properties of CRC and provides an 

assessment of the capability of CRC in providing flexural resistance against blast effects. 

Part 2 of the research study examines the use of CRC for the specialized application of 

blast and ballistic protection.  The program characterizes resistance of CRC to contact 

and near contact high explosive detonations, and examines depth of penetration, and 

perforation using V50 methods.   

The results of part 1 of the experimental and analytical investigation found that (1) crumb 

rubber replacement of coarse and fine aggregate is done at a cost premium of 

approximately ¾ times the replacement percentage, (2) the addition of crumb rubber 

results in a decrease in unit weight, compression strength, splitting tensile strength, and 

elastic modulus, linearly related to the addition of rubber, (3) the modulus of rupture was 

not sensitive to up to 40% rubber aggregate replacement, and (4) flexural failure modes 

occur at lower demand levels for due to the use of rubber replacement.  The reductions 

are in line with the material property conclusions previously discussed.  
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The results of part 2 of the experimental and analytical investigation found that (1) the 

addition of crumb rubber results in decreased resistance to ballistic demands and near-

field blast loads, (2) the reduction is less than that expected by accepted predictor 

methods and (3) when normalized by weight rather than thickness, the addition of CRC 

results in an improvement in resistance to ballistic and near-field blast demands. 
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Chapter 1: Introduction 

One of the most problematic sources of waste produced in the United States is scrap tires.  

Based on 2003 statistics, it has been estimated that the U.S. produces 290 million waste 

tires annually, with over 265 million in stockpiles [EPA 2008].  Such a large grouping of 

tires provides fire and health hazards. Since they are harmful, very bulky and mostly void 

space, dumping whole tires in landfills has been banned in 38 states [EPA 2008].  As an 

alternative to discarding whole tires, they can be taken to tire shredding processors where 

the tires can be reduced to smaller pieces known as tire chips or crumb rubber [Eldin 

1993].  The pieces can then be burned, stored in landfills, or used as a construction 

material [Taha 2008].  Shredded tire bits are only used sparingly in construction since 

rubber does not provide any significant structural qualities.  The most common use of, 

waste rubber, more specifically tire chips, have been in highway asphalt mixes.  This 

process has been well documented and used in practice since 1990 [Epps 1994 and 

Khatib 1999].  Extending this concept for Portland cement concrete mixes has gained 

interest in recent years.  To accomplish this, portions of coarse and fine aggregate are 

replaced with tire chips and crumb rubber, respectively. 

Material characterization experiments have been conducted to determine the practicality 

of using crumb rubber in Portland cement concrete.  Research has shown that 

replacement of conventional aggregates with rubber results in a decrease in compressive 

and tensile strength and stiffness.  Eldin and Senouci [1993] performed tension and 

compression tests on two types of cylinders, with portions of the coarse or fine aggregate 
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replaced with rubber. They observed tensile strength decreases of 50% and compression 

strength reductions of up to 85% however noted that the rubberized concrete absorbed a 

great amount of plastic energy.  Khatib and Bayomy [1999] observed similar behavior 

and recommended a practical limit of 20% volumetric replacement of aggregate to 

maintain reasonable structural performance.   

The use of rubber aggregate in Portland cement concrete has shown to improve the 

energy absorbing characteristics.  Turatsinze et al. [2005] observed that the rubber acts as 

a crack arrester. When the cracks meet the rubber particles, the rubber absorbs the 

cracking stresses. This increases the strain capacity prior to macro-cracking. Therefore, it 

was concluded that when strength is not a limiting factor, rubberized concrete may be 

used to resist cracking.  Further research conducted by Taha et al. [2008] on the micro-

structure of the crumb rubber indicated that tire chips increase the fracture toughness and 

impact resistance of the concrete. The rubber acts as an additional energy absorber that 

toughens the concrete. Zheng et al. [2008] tests concluded that the brittleness index is 

reduced with the addition of rubber aggregate.  This signified a greater ductility in the 

rubberized concrete. Wong and Ting [2009] performed experiments on normal and high 

strength rubberized concrete and found that the rubberized concrete exhibited less brittle 

failure and higher energy absorption capacity. 

Based on the published literature on crumb rubber concrete (CRC) it is apparent that 

ductility and energy absorption is enhanced over that of conventional concrete.  These 

characteristics may prove beneficial for applications where dynamic blast pressure 

demands are a concern.   
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1.1 Research Significance 

Due to our military presence in hostile territories worldwide, personnel in military 

facilities are recurrently subjected to blast, fragmentation, and ballistic threats.  One such 

threat that must be considered in these situations is that of a mortar attack.  Mortar 

detonations on or near the roof or exterior walls of a building can cause damage to 

structure as well as the occupants.  Damage is generated as a result of both the explosive 

pressure demands and the impact of fragments.  Fragmentation of mortar casing produces 

high velocity low mass projectiles which can penetrate or perforate concrete wall and 

roof elements.  Concrete materials are also known to fracture and spall when subjected to 

near-field blast.  This can create high velocity fragmentation hazards that can cause 

extensive collateral damage to the very assets they are designed to protect.   

While it has been generally accepted that rubber significantly decreases the overall 

strength of concrete, previous research has indicated that rubberized concrete has 

improved energy absorption over traditional concrete.  In this research program, the 

constitutive properties of CRC are closely examined for a variety of rubber replacements.  

The goal is to determine if these properties can provide enhanced flexural response 

protection against blast detonation at moderate to large standoffs.  The flexural 

performance of wall panels fabricated from CRC is experimentally examined and the 

predictive response against blast demands is evaluated.   

Additionally, the brittle mode response of CRC to close-in blasts and ballistics is directly 

examined for a variety of rubber replacements.  The goal of the research program is to 
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determine if CRC provides enhanced resistance over conventional concrete and to 

examine if conventional predictor methods can be used to estimate the performance. 

Chapter 2: Mechanical Properties and Flexural 

Performance of CRC 

2.1 CRC Mix Development 

The CRC used in the experimental program was chosen to produce designs with 

mechanical properties acceptable for building construction.  The quantity of coarse and 

fine rubber aggregates was limited to a 40% volume replacement of the aggregate.  

Rubber replacements in excess of 40% result in excessive decreases in strength and 

stiffness and were not included. 

The mix constituents included Type 1 cement, crushed coarse aggregates, natural fine 

aggregates, and crumb rubber.  A crushed limestone with a #67 coarse aggregate 

gradation (0.75 in. (19.0 mm) to No.4) was used for coarse aggregate.  A standard natural 

sand gradation was used for the fine aggregate in accordance with ASTM C33.  The 

crumb rubber aggregate was produced from shredded scrap tires.  The majority of 

remnant tire materials including steel and dust were removed.  The crumb rubber was 

produced using ambient techniques (shredded at room temperature).  This method is 

different from conventional techniques which cryogenically process and shred the 

material.  The ambient technique was chosen to minimize the effect of the shredding on 
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the mechanical properties of the rubber.  Coarse crumb rubber (CCR) and fine crumb 

rubber (FCR) were used in the research program.  A #5 CCR gradation (9.5 - 6.4 mm) 

with a bulk weight of 34.0 lb/ft
3 

(0.54g/cm
3
) was used for the coarse aggregate 

replacement.  A #2 FCR gradation (passing a No.5 to No.10 sieve) with a bulk weight of 

28.40 lb/ft
3 

(0.45 g/cm
3
) was used for the fine aggregate replacement.  The coarse and 

fine crumb rubber aggregates and the typical distribution of rubber in the concrete are 

illustrated in Error! Reference source not found..   

 

Figure 1:  Rubber aggregates and distribution in cracked sections 

2.1.1 CRC Mix Properties 

CRC mixes were fabricated with variations in the amount of rubber aggregate as 

summarized in Table 1.  Mix design was based on a standard 4000 psi (27.60 MPa) 
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strength target using an absolute volume basis design.  Rubber replacement levels were 

made relative to the volume of coarse and fine aggregate replaced.  The volumetric 

aggregate replacement percentage refers to the volume of coarse or fine stone aggregate 

replaced by rubber.  The volumetric rubber replacement represents the percentage of 

volume of rubber compared to the total volume of concrete batched.  The design water to 

cement ratio, unit weight, air content, and slump measurements were recorded for the 

majority of batches and are presented in Table 1. 

Table 1: Batch Matrix and Properties 

ID 

Volumetric 

Aggregate 

Replacement 

Rubber 

Volume per 

Total 

Volume 

Water 

Cement 

Ratio 

Unit 

Weight 

[lb/ft
3
]

 

(kg/m
3
) 

Slump 

[mm] 

Air 

[%] 

Coarse Fine 

A-10-10-.40 10% 10% 6.4% 0.40 - - - 

A-20-10-.40 20% 10% 10.0% 0.40 - - - 

A-20-10-.45 20% 10% 10.0% 0.45 - - - 

A-40-10-.45 40% 10% 17.3% 0.45 - - - 

Control 0% 0% 0.0% 0.40 - - - 

A1-20-0-.40 20% 0% 7.3% 0.40 140(2242) 178 3.4 

A1-20-10-.40 20% 10% 10.0% 0.40 134(2147) 64 5.0 

A1-40-0-.40 40% 0% 14.5% 0.40 132(2115) 102 3.5 

A1-40-10-.40 40% 10% 17.3% 0.40 124(1986) 76 6.0 

Control II 0% 0% 0.0% 0.40 153(2451) 140 2.0 

A2-20-0-.40 20% 0% 7.3% 0.40 143(2291) 83 3.0 

A2-40-0-.40 40% 0% 14.5% 0.40 132(2115) 203 4.0 

Control III 0% 0% 0.0% 0.52 150(2403) 127 2.0 

Rubber aggregate replacement results in a direct decrease in unit weight and an increase 

in the air content as illustrated in Figure 2.  The decrease in unit weight is linearly related 

to the addition of rubber aggregate.  Given that the rubber has a considerably lower 

density than the stone aggregate the volumetric replacement results in a proportional 

decrease in the unit weight.  The increase in air content with rubber content can be 
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roughly approximated with a linear relationship.  The air content measurements ranged 

from 3% to 4% in batches incorporating only CCR. Conversely, batches incorporating 

both FCR and CCR ranged from 5% to 6%. This may be due to the fact that the FCR 

particles are hydrophobic, and create miniscule rivulets around the particles. These 

rivulets may form air pockets during the hydration process.  Another likely possibility is 

that unlike all the other concrete constituents, the rubber particles are compressible.  This 

compressibility would result in an artificial amount of air using standard ASTM C231 

Test Methods.  The air quality should be examined further through a study of the 

hardened air properties.   

 

Figure 2:  Influence of rubber content on air content and unit weight [1 lb/ft
3
=16 

kg/m
3
] 

2.2 Mechanical Properties of CRC 
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The mechanical properties of CRC were assessed in accordance with ASTM 

specifications.  The compressive strength, tensile strength, modulus of rupture, elastic 

modulus, and stress-strain characteristics were determined.  The variation in performance 

is compared with percentage replacements of stone coarse and fine aggregates with 

crumb rubber aggregates, and control mix designs containing no crumb rubber aggregate.  

When applicable the performance is compared with commonly accepted formulations of 

strength and response. 

2.2.1 Compressive Strength 

The strength gain for the cylinders was measured using 102 mm diameter 203 mm tall 

cylinders in accordance with ASTM C39.  The cylinders were stored submerged in lime 

saturated water until testing in accordance with ASTM C192.  The compressive strength 

reduction relationship at an age of 28-days is illustrated in Figure 3.  The strength 

reduction is linearly proportional to the volumetric quantity of rubber, R%Vol, used in the 

concrete.  
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Figure 3: 28-day strength reduction with rubber addition 

The strength gain with time is illustrated in Figure 4.  The amount of coarse crumb rubber 

replacement directly influences the compressive strength.  The strength decrease is 

consistent at the 7-day, 21-day, and 28-day ages.  The reduction in the compressive 

strength is proportional to the rubber quantity. 

The strength gain data is fit to ACI 209R [1992] compressive strength gain formulations.  

The fit is illustrated in Figure 4.  The formulation has the form of equation 1.  The 

regression fit of the data for parameters α and β are presented in Table 2.  Based on 

accuracy of the regression, the 10% and 20% coarse aggregate replacement regressions 

provide a good fit to the data.  The 40% replacement however does not. 
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Figure 4:  ACI 209 estimated strength gain [1 psi = 6.89 kPa] 
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Table 2: Long-term strength gain 

 

Mix α β R
2
 

0%-0%-0.40 1.985 0.905 0.846 

10%-10%-0.40 2.921 0.877 0.987 

20%-0%-0.40 2.642 0.908 0.803 

20%-10%-0.40 1.529 0.925 0.911 

40%-0%-0.40 0.128 1.023 0.020 

40%-10%-0.40 0.562 0.939 0.475 

 

Splitting Tensile Strength 

The tensile strength of CRC was measured in accordance with ASTM C496.  The results 

are tabulated in Table 3.  Splitting tensile strength of concrete, f’t, is assumed to be 
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valid for low rubber replacement levels but is not representative of higher levels of 

replacement. 

 cff t '0.6'    units: [psi] or cff t '75.15'    units: [kPa]Equation 2 

Table 3: Tensile strength 

 

Mix Design f'c [psi(MPa)] f't [psi(kPa)] f't  #sqrt(f'c) 

10%C-10%F-0.40 4940 (34.06) 421 +/- 14 (2902 +/-96) 6.00 (15.7) 

20%C-10%F-0.40 3967 (27.35) 360 (2481) 5.72 (15.0) 

40%C-10%F-0.40 1468 (10.12) 176 +/- 32 (1213 +/-220) 4.59 (12.1) 

20%C-10%F-0.45 3678 (25.36) 343 (2365) 5.66 (14.8) 

40%C-10%F-0.45 2490 (17.17) 222 +/- 14 (1530 +/196) 4.45 (11.7) 

The splitting tensile strength decreases as a function of the coarse aggregate replacement.  

For higher aggregate replacements the splitting strength of the material decreases with 

respect to the square root of the compressive strength.  An estimate of the decrease of 

tensile strength with respect to the percentage of coarse aggregate replacement, C, is 

presented in Figure 5. 
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Figure 5:  Splitting tension strength reduction with coarse aggregate replacement 

[Units: f’c (psi)] 

2.2.2 Flexural Tensile Strength – Modulus of Rupture 

The modulus of rupture (MOR) of CRC was measured in accordance with ASTM C78.  

The measured MOR for the five mix designs are presented in Table 4.  Modulus of 

rupture of concrete, f’r, is commonly computed with respect to the square root of the 

compressive strength, f’c.  The relationship for normal strength and weight concrete 

(equation 3) is conservative for all rubber replacement levels except for the 40%C-10%F 

case.  The absolute rupture strength consistently decreases with the addition of rubber 

aggregate; however, this effect is not present when normalized by the compressive 

strength.  The addition of fine rubber aggregate does not consistently alter the strength.  
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Table 4: Modulus of rupture and elastic properties [1 psi = 6.89 kPa] 

 

Crumb 

Rubber 

Replacement 

Average 

f’r, [psi] 

f'c 

[psi]* cfof '#  

Average 

Modulus of 

Elasticity [ksi] 

Peak Stress 

[psi] 

Strain at 

Peak 

Stress 

0%C-0%F 718 8218 7.91 5777±831 7905±311 2.08E-03 

20%C–0%F 530±55 5122 7.40 5030±558 4525±393 1.33E-03 

20%C-10%F 523±45 4531 7.77 3663±474 4042±235 1.48E-03 

40%C-0%F 414±24 2563 8.18 3454±738 3088±19 1.42E-03 

40%C-10%F 307±27 2180 6.58 2612±133 2525±14 1.57E-03 

2.2.3 Constitutive Properties 

CRC mix designs were examined to determine the variation in elastic properties with 

changes in rubber aggregate replacement including elastic modulus, peak stress, and 

strain at peak stress.  Testing was done in accordance with ASTM C469 and is 

summarized in Table 4.   

The compressive elastic modulus of CRC decreases with increases in quantity of rubber 

aggregate.  The elastic modulus of rubber is significantly lower than that of hardened 

concrete.  Consequently, under compressive loads the rubber aggregate performs as a 

void in the concrete.  The elastic properties can be approximately scaled from that of 

standard concrete by accounting for the loss in concrete volume or weight resulting from 

the rubber replacement.   

The elastic modulus of CRC is compared with two formulations.  The first accounts for 

the change in unit weight, wc, and the compressive strength of the material.  This method 

is based on ACI 318 recommendations for elastic modulus of concrete as noted in 

equation 4.   

 Ec1 = wc
1.5

 33f’c
0.5

 units: [lb/ft
3
 and psi]

 
Equation 4 
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The second formulation is based on the total reduction in aggregate content.  This method 

uses the percentage replacement of aggregate (as opposed to the volumetric replacement) 

as presented in equation 5. 

 Ec2 = Ec Control x (1 – % Agg.Replacement)
 

Equation 5 

The accuracy of the two relationships is illustrated in Figure 6.  The ACI formulation 

results in only a 4% error for the control mix but underestimates the elastic modulus of all 

CRC mixes by over 10%.  The volumetric reduction method provides a better estimate of 

the elastic modulus with an error of 10% or less.  The second method (Equation 5) is 

recommended. 

 

Figure 6: Relationship between elastic modulus and rubber aggregate (1ksi = 

6.894MPa) 
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The flexural performance of CRC was examined to determine if the strength or 

deformation capability of the material would provide enhancements over traditional 

concrete.  The study focuses on the performance of standard wall panels used as exterior 

cladding on building systems.  The panels examined replicate precast walls used in non-

load bearing façade applications.  The panels were designed for wind and handling loads.  

Each panel was reinforced at the center with conventional reinforcement for flexural 

demands and temperature and shrinkage requirements.  The panels measure 12 ft 

(3657.6mm) long and 6 in. (152.4mm) thick.  The panels were tested in one-way action 

over a 10 ft (3048mm) span and were subjected to a uniform load.  A width of 16 in. was 

examined, due to the one-way action of the panel the performance is representative of 

similar panels of greater width.  The panel details are illustrated in Figure 7. 

 

Figure 7: Panel section and loading setup 

Each panel was loaded using a standard loading tree test fixture as illustrated in Figure 7 

and was tested under a quasi static displacement control until failure.  The load and 

displacements for each test were measured.  The load is reported with respect to the 

uniform pressure applied to the 10ft (3048mm) tested span of the panel.  Displacements 

Roller Roller

10' [3048.0]

12' [3657.6]

Section

1'-4" [406.4]

6" [152.4]

3" [76.2]

6x6 - W4.0xW4.0
2 - #4 A706 Bars

6" [152.4]

Setup



www.manaraa.com

18 

 

were measured at midspan.  The panels were load tested at the University of Missouri 

[Bewick et. al. 2010].  Three concrete types were evaluated: a control batch, a 20% 

coarse aggregate replacement, and a 40% coarse aggregate replacement.  For each 

concrete type three experiments were performed.  Further details on the performance of 

each panel can be found in Bewick et al., 2010. 

The quantity of WWR and the depth to the reinforcement varied between specimens.  

The average depths and reinforcement areas were measured after each test.  The 

compression strength was measured in accordance with ASTM methods.  The strength 

was measured twice, first at 28 days and again at 90 days within two weeks of the 

uniform loading tests.  Due to the age of the panels the compression data taken at 90 days 

is assumed to be representative of the final panel material strength.  The modulus of 

rupture and elastic modulus were approximated using the formulations developed in 

previous sections.  As-built properties as well as estimated material properties for each 

slab type are in Table 5.   

Table 5: Material properties of panel specimens 

Mix 

Approximate 

Compressive 

Strength [psi] 

Estimated 

f’r [psi] 

Estimated Ec 

[ksi] 

 

Unit 

Weight 

[lb/ft
3
] 

Average 

rebar 

depth 

from 

tension 

face 

[in.] 

Average 

WWR 

depth 

from 

tension 

face 

[in.] 

Total 

Area 

of 

WWR 

[in
2
] 

0% 5559 +/- 152 559 4656 153 2.83 2.45 0.11 

20% 3557 447 3725 143 2.65 2.18 0.12 

40% 2793 +/- 193 396 2793 132 2.65 2.18 0.08 
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As an example, the full results for the 20% replacement are presented in Figure 8.  A 

comparison of the average responses for the three concrete types is illustrated in Figure 9.  

The total history is presented as well as the elastic region shown on the inset.  The 

average as-built properties for each concrete type are not exactly the same so direct 

comparison is limited to a discussion of the cracking and stiffness performance.  The max 

pressure, Pmax, corresponding displacement, Δmax, elastic stiffness, and cracking pressure, 

Pcr are summarized in Table 6.  The cracking strength, ultimate strength, ultimate 

displacement, and elastic stiffness decrease with rubber replacement. 

 

Figure 8: Pressure – deformation response 20% rubber aggregate (1psi = 6.894 kPa, 

and 1in = 2.54cm) 
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Figure 9: Average pressure – deformation response (1psi = 6.894 kPa, and 1in = 

2.54cm) 

Table 6: Average measured response 

CRC 

type 
Pcr [psi] 

Elastic 

Stiffness, 

[psi/in] 

Pmax [psi] Δmax [in.] 

0%  2.34±0.28  16.95±4.2 4.41±0.22 3.60±1.45 

20%  1.83±0.15 14.53±5.0 4.37±0.11 3.05±0.05 

40%  1.56±0.12 10.40±3.5 3.96±0.16 2.72±0.24 

2.3.1 Estimate of Response Based on Mechanical Characteristics 

Measured and estimated responses of the uniform loading test are compared to assess the 

accuracy of the estimation methods.  Estimated load-deflection curves are created using 

tas-built properties and material characteristics presented in Table 5.  A simplified tri-

linear moment-curvature analysis was conducted using the limit states of cracking, yield, 
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and nominal strength.  Ultimate deflection was found at each limit state using standard 

integration methods. 

The cracking moment was estimated using strength of materials in accordance with 

Equation 6.  The cracking moment, Mcr, is related to the panel thickness, t, the gross 

moment of inertia, Ig, and the modulus of rupture, f’r.  

 Mcr = f’r x Ig / (t/2)  Equation 6 

The yield strength was estimated using the Hognestad stress-strain model for the 

compressive concrete [1951].  The distance to the neutral axis, c, was found by 

integrating the compressive stress from the Hognestad equation, equation 7, and setting 

this concrete compressive force equal to the force of reinforcement at yielding.  Given the 

value of c, the moment was found by integrating the stress multiplied by the distance to 

the reinforcement from the neutral axis to the ultimate compressive fibers. The steel was 

assumed to have a yield strength of 80 ksi (552 MPa), and an elastic modulus of 29000 

ksi (199948 MPa). 

 

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The nominal strength was estimated in accordance with ACI 318 [2008] procedures, 

equation 8.  The nominal moment, Mn, is related to cross-sectional area of rebar and 

WWR, As and Awwr, the stress in the rebar and WWR, fs, the width of panel, b, and the 

Whitney stress block depth, a, and the depth to reinforcement, d.    
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 𝑀𝑛 = (𝐴𝑠+𝐴𝑊𝑊𝑅) ∗ 𝑓𝑠 ∗ (𝑑 − 𝑎/2) Equation 8 

 𝑎 =
(𝐴𝑠+𝐴𝑤𝑤𝑟)∗𝑓𝑠

0.85𝑓𝑐
′𝑏

 

 

Figure 10: Measured and theoretical pressure displacement curves 

Figure 10 compares the theoretical values with the measured resistance functions.  The 

theoretical curves represent the as-built conditions and are terminated at the nominal 

capacity.  The theoretical graphs for the 0% and 20% provide an accurate fit of the 

measured response.  The 40% case resulted in a good fit of the elastic and cracking 

behavior and a conservative estimate of the post cracking response.   

2.3.2 Estimated Dynamic Enhancements Provided by CRC 
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The theoretical resistance functions can be used to provide a prediction of the dynamic 

response under an exterior explosion. The responses of the CRC panels are estimated 

using single degree of freedom modeling techniques as described in detail in Biggs 

[1964].  The panel is simplified to a single degree of freedom spring-mass system.  The 

resistance of the spring is based on the pressure – displacement response provided in 

Figure 10.  The panel unit weight is accounted for.  The panels are assumed to span 10 ft 

(3048mm) and are simply supported.  The panels are assumed to form a flexural yield 

mechanism at midspan.   

Concrete models with 0% and 40% CRC were directly compared using the same cross-

section.  The cross section, illustrated in the inset of Figure 11, has a height of 6 in, width 

of 16 in, and 0.5 in
2
 of steel reinforcement with yield strength of 75 ksi (517 MPa) at 

mid-height.  Additionally, a second cross section was modeled with 40% CRC that 

included a height of 7 in with the same reinforcement also at mid-height.  The second 

cross-section with 40% CRC is approximately the same weight as the original cross-

section with 0% CRC.  In this way 40% and 0% CRC concrete are compared for an 

identical reinforcement detail and for a section of equal weight.  The displacement time 

history response to a blast demand with a peak positive reflected pressure of 27.3 psi and 

positive impulse of 121 psi-msec is shown in Figure 11.  The peak responses are 

summarized in Table 7. 
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Figure 11: Displacement time history for CRC panels subject to blast demand (1 in 

= 2.54 cm) 

Table 7: Estimated displacement under blast demands 

% Coarse Aggregate 

Rubber Replacement 

Max 

Displacement 

[in.(cm)] 

Increase 

relative to 0% 

Permanent 

Displacement 

[in.(cm)] 

Increase 

relative to 

0% 

0%, 6 in. depth 2.66(6.76) 100% 1.25(3.17) 100% 

40%, 6 in. depth 3.44(8.81) 129% 1.40(3.56) 112% 

40%, 7 in. depth 2.57(6.53) 97% 1.11(2.82) 89% 

The 0% CRC experiences a significantly smaller displacement than the 40% CRC for an 

identical section.  However the analysis shows that for a section of similar weight, the 

40% CRC material can be used to achieve less peak and permanent displacement than the 

0% CRC section. 
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2.4 Cost Implications of Using CRC 

The use of crumb rubber in concrete is accomplished by replacement of low cost coarse 

and fine aggregates.  Consequently, rubber replacement is done at a premium as 

illustrated in Figure 12.  The cost estimates were conducted in December 2009. The cost 

of ambient rubber is $0.37 per kg while coarse and fine aggregates are priced at $0.04 per 

kg and $0.02 per kg, respectively.  Due to the low cost for stone aggregates, rubber 

additions are not significantly offset by the reduction in conventional aggregates.  

Estimated cost per cubic yard for different rubber contents were calculated by utilizing 

the specific gravity and batching ratios used in this research program.  A baseline 

concrete cost of $100 per cubic yard ($76 per cubic meter) is assumed for this example.  

An increase in rubber coarse aggregate results in a proportional (approximately 0.75) 

increase in the cost.  For example a 40% addition of rubber results in roughly a 30% 

increase in cost.  This is reduced for fine aggregate replacements due to the fact that fine 

aggregate represents a smaller portion of the concrete volume.  For CRC to be 

economical, the performance benefits must outweigh the additional cost. 
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Figure 12:  Cost premium for crumb rubber additions [1 yd
3
 = 0.76 m

3
] 

2.5 Conclusions and Recommendations 

An experimental study was conducted to assess the mechanical characteristics of Portland 

cement based concrete fabricated with shredded rubber aggregate.  Variations in coarse 

and fine aggregate replacements were examined and used to assess the practicality of 

using the material for blast resistant applications.  The following conclusions can be 

drawn from the research presented. 

 The unit weight of CRC decreases linearly with the addition of rubber aggregate.  The 

decrease is directly related to the low specific gravity of the rubber (1.03).  Since the 

rubber has a considerably lower density than the stone aggregate the volumetric 

replacement results in a proportional decrease in the unit weight.  A formulation for 

estimating unit weight from the rubber content was developed. 
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 The plastic air content increases with the rubber content.  Also, the batches incorporating 

fine crumb rubber had higher air content values. This may be due to the fact that the FCR 

particles are possibly somewhat hydrophobic, thus creating miniscule rivulets around the 

particles. These rivulets may form air pockets during the hydration process.  Another 

likely possibility is that unlike all the other concrete constituents, the rubber particles are 

compressible.  This compressibility would result in an artificial amount of air using 

standard ASTM Test procedures.  

 The use of ambient crumb rubber in concrete is accomplished at a cost premium.  

Utilizing the specific gravity and batching ratios an increase in rubber coarse aggregate 

was found to produce a proportional (approximately 0.75) increase in the cost.  For 

example a 40% addition of rubber results in roughly a 30% increase in cost.  This is 

reduced for fine aggregate replacements due to the fact that fine aggregate represents a 

smaller portion of the concrete volume.  For rubber concrete to be economical the 

performance benefits must outweigh the additional cost. 

 The compressive strength of concrete decreases with the replacement of rubber 

aggregate.  The reduction in the compressive strength is linearly proportional to the 

volumetric quantity of rubber used in the concrete.  A formulation for estimating the 

strength reduction based on the volumetric rubber replacement was developed and found 

to provide a good fit. 

 The ACI 209 formulations for strength gain were found to provide a good estimation of 

strength for CRC with rubber replacements of 20% or less.  The 40% mix was not 

predicted well by the ACI formulations.  
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 The tensile splitting strength of CRC was found to decrease with the addition of rubber.  

The decrease is expected since under tension the rubber aggregate acts as voids in the 

concrete thus decreasing the gross cross-section of the concrete.  A second degree 

relationship between splitting tension strength, rubber content and compressive strength 

was developed and found to provide an accurate prediction.  The addition of rubber 

aggregate does not significantly alter the flexural tensile strength (modulus of rupture, 

MOR) of the material when normalized by the compressive strength.   

 The elastic modulus of CRC decreases with the addition of rubber.  The reduction in 

elastic modulus is found to be accurately modeled by accounting for the percent 

volumetric replacement of rubber.  A 20% replacement of rubber would result in a 20% 

decrease in elastic stiffness.  The volumetric reduction method provides an error of 10% 

or less.   

 As expected, based on the material characteristics, the flexural cracking strength, ultimate 

strength, ultimate displacement, and elastic stiffness decrease with an increase in rubber 

aggregate replacement.   

 The pressure displacement curve was modeled using a moment-curvature analysis.  The 

model fits fairly closely with the measured data for 0%, 20%, and 40% replacement. 

 The blast resistance of CRC decreases with the addition of rubber.  When the size of a 

specimen with 40% CRC is normalized to have the same weight as a specimen with 

0%CRC, the maximum displacements of the 40% CRC specimen experiences less 

maximum and permanent deflection. 
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In summary the use of CRC decreases strength, stiffness, and flexural resistance of 

concrete.  This is directly attributed to the addition of the rubber which has a low mass 

and strength relative to the other constituents used in concrete.  The low mass however 

results in a decrease in unit weight when rubber aggregate is used.  When accounting for 

the weight of the material the same dynamic flexural response and level of protection can 

be achieved with an equivalent weight of CRC material.  The use of CRC however is 

done at a cost premium due the high relative cost of crumb rubber over traditional 

concretes.  For building systems requiring large areas of protection the weight savings 

would provide reduced dead load on the building.  For this particular example, the cost 

savings in a smaller gravity system may outweigh the added cost of CRC over traditional 

concrete.   

Utilizing the material strength reductions developed in this research CRC can be safely 

used for military and government facilities where blast or ballistic threats are expected.  

This should only be conducted if the design goal is to dispose of vehicle tires in a safe 

manner, otherwise the cost of using CRC will likely be a premium to the construction 

project.   
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Chapter 3:  Near Field Blast and Ballistic 

Performance of CRC 

3.1 CRC Properties 

Mechanical property tests were completed prior to the ballistic tests.  Compressive 

strength tests were completed in accordance with ASTM C39 on 4x8 cylinders stored in 

accordance with ASTM C31.  Tensile concrete strength tests were completed in 

accordance with ASTM C496 or ASTM C78.  ASTM C496 provides a measure of the 

pure tensile strength of concrete while C78 provides a measure of tension strength in the 

presence of flexure.  The Batch Matrix and Properties are presented in Table 1.  

As discussed previously, volumetric replacement of stone based aggregates with crumb 

rubber results in a decrease in unit weight, a decrease in compressive strength, and a 

decrease in tensile strength.  No significant change in the modulus of rupture was 

observed when normalized with respect to the square root of the compressive strength.  

The materials used in this study are in line with those observations. 
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Table 8: Batch Matrix and Properties [1 psi = 6.894 kPa] 

Study 

 

Volumetric 

Aggregate 

Replacement 

Volumetric 

Rubber 

Replacement 

Unit Weight 

[lb/ft
3
]

 

(kg/m
3
) 

Compressive 

Strength, f'c 

[psi] 

Tension 

Strength 

[psi] 

Tension 

Strength 

[#sqrt(f'c)] 

Coarse Fine 

Spall 

and 

Breach 

0% 0% 0.0% -
 

5559 +/- 152 - - 

20% 0% 7.3% 143(2291) 3557 +/- NA - - 

40% 0% 14.5% 132(2115) 2793 +/- 193 - - 

Ballistic 

Penetrati

on 

10% 10% 6.4% -
 

4940 +/- 99 421+/-14
1
 6.00 

20% 10% 10.0% -
 

3967 +/- 34 360
1
 5.72 

40% 10% 17.3% -
 

1468 +/- 135 176+/-32
1
 4.59 

Ballistic 

Perforati

on 

0% 0% 0.0% 153(2451) 8195
2
 394

3
 7.72 

0% 0% 0.0% 153(2451) 3365 +/- 144 493
3
 6.91 

20% 0% 7.3% 140(2242) 5100
2
 662

3
 7.31 

40% 0% 14.5% 132(2115) 2610
2
 424

3
 7.31 

1
Tension strength measured by splitting tension test on cylinder in accordance with ASTM C496. 

2
Compression strength is estimated from strength gain measured in accordance with ASTM C39. 

3
Tension strength measured by modulus of rupture in accordance with ASTM C78. 

3.2 Spall/Breach of CRC 

The spall and breach capacity of CRC was examined to evaluate if the resistance is 

affected by the amount of crumb rubber aggregate present in the concrete.  Due to the 

low stiffness and apparent energy absorbing characteristics of CRC the performance 

under spall and breach conditions is assessed.  The spall and breach characteristics were 

compared to the performance of traditional concretes as predicted by methods outlined in 

the Unified Facility Criteria 3-340-02 [2008].   

Close-in detonation of high explosives produces a high velocity pressure wave that in 

turn creates shock wave propagation through solid wall elements.  The shock wave 

initiates as a compression wave which is reflected as a tension wave when it hits the back 

face of the panel.  If the resulting stress from the sum of the tension wave and 
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compression wave exceeds the tensile capacity of the concrete spalling occurs [UFC 3-

340-02 2008]. 

Due to the short duration over which the shock wave transmission occurs and the 

acceleration of the wall itself, spalled pieces of concrete can have a velocity of several 

hundred feet per second as they separate from the wall producing a danger for occupants 

of the structure.  When the spall depth exceeds half the depth of the wall breaching 

typically occurs [US Army 1998].  Breaching provides an added danger to the occupants 

since it allows for insertion of small arms into the protected space.   

3.2.1 Spall and Breach Experiment Design 

Three mix designs were examined: a control (no rubber), a 20% coarse aggregate 

replacement, and a 40% coarse aggregate replacement.  Compressive strength of the 

concrete was determined within 1-day of the detonation.  The properties of the three 

concrete mixes are summarized in Table 1.  The strength of the concrete decreased 

linearly with volumetric addition rubber aggregate.   

Three panels were fabricated using each concrete mix.  The panels were sized to have a 

surface width and length greater than twice the predicted spall diameter.  The panel 

dimensions are illustrated in Figure 13.  A low level of reinforcement was used to ensure 

integrity of the slab prior to testing without significantly influencing the spall and breach 

characteristics.  Welded wire reinforcement (6 in. x 6 in. W4.0 x W4.0 meeting the 

requirements of ASTM A185) was placed at the mid-depth of the panel.  This 

reinforcement provided a gross reinforcement ratio of 0.0011, which is less than 0.0014, 



www.manaraa.com

33 

 

the ACI 318 [2008] requirement for temperature and shrinkage reinforcement of slabs.  

The spall and breach detonations were conducted with the panels in a horizontal 

orientation.  Each panel was supported on four edges using a wooden frame resting on a 

sand base.  Approximately 2.5 in. (64 mm) of the outer panel edge was supported on the 

wood frame (Figure 13).   

 

Figure 13:  Spall and breach setup (1 in = 2.54 cm) 

Each concrete type was examined under three blast demands.  The panels were exposed 

to an identical charge, at three different stand-off distances. The explosive used in this 

experiment was 2.0 lbs. (0.907 kg) of C-4 molded into a sphere approximately 4 in. (100 

mm) diameter. The stand-off distances were 2.5 in., 5.0 in., and 9.0 in. (63.5 mm, 127 

mm, 228.6 mm) measured from the panel face to the center of the charge.  The three C-4 
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spheres for each concrete type were detonated simultaneously to minimize the effect on 

the adjacent panel. The panel layout for the control concrete just prior to detonation is 

illustrated in Figure 13. 

3.2.2 Spall and Breach Results 

Following detonation the panels were examined for spall and breach damage on the front 

and rear faces. The resulting damage to each panel is presented in Figure 14.  The images 

present the front and rear face damage for each panel.  As illustrated the 2.5 in. (63.5 

mm) standoff resulted in breach of all panels, while the 5 in. (127 mm) standoff produced 

spall on the interior face and the 9 in. (228.6 mm) standoff only produced spall on the 

20% aggregate replacement specimen.  The average measured spall diameter on the front 

and rear face and the diameter of the breach, if present, are summarized in Table 9. 

 

Figure 14:  Spall and breach damage to CRC slabs 

  



www.manaraa.com

35 

 

Table 9:  Spall and breach performance (1 in = 2.54 cm) 

Coarse 

Aggregate 

Replacement 

Standoff 

[in.] 

Front 

Face 

Crater 

Dia. 

[in.] 

Front 

Face 

Breach 

Dia. 

[in.] 

Protected 

Face 

Breach 

Dia. [in.] 

Protected 

Face 

Spall 

Dia. [in.] 

Protected 

Face 

Depth of 

Spall 

[in.] 

Expected 

Result 

(UFC) 

Actual 

Result 

40% 2.5 17.875 11.750 11.750 23.125 N.A. Spall Breach 

20% 2.5 16.969 11.750 11.750 25.500 N.A. Spall Breach 

0% 2.5 16.719 12.375 12.375 29.000 N.A. 

No 

Damage Breach 

40% 5 6.906 0.000 0.000 21.000 4.750 Spall Spall 

20% 5 6.250 0.000 0.000 21.031 4.125 Spall Spall 

0% 5 5.750 0.000 0.000 22.625 3.625 

No 

Damage Spall 

40% 9 5.813 0.000 0.000 1.000 0 Spall 

No 

Damage 

20% 9 6.219 0.000 0.000 11.719 2.250 Spall Spall 

0% 9 4.625 0.000 0.000 1.625 0 

No 

Damage 

No 

Damage 

 

3.2.3 Expected Results Based on Predictor Methods 

Expected spall and breach thresholds are calculated in accordance with the UFC 3-340-02 

[2008].  Both thresholds are determined with respect to a spall parameter, Ψ, calculated 

using Equation 9.  For an uncased charge, the spall parameter is related to standoff 

distance, R (ft), concrete compressive strength, f’c (psi), and adjusted charge weight, Wadj 

(lbs).  Adjustments are made for burst type, free air or surface burst, as well as shape of 

explosive. 

 
0353.353.0926.0 *'*


 adjc WfR    Equation 9 
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The spall and breach thresholds can be computed in accordance with Equation 10 and 

Equation 11, respectively.  Both relationships are defined relative to the spall parameter, 

Ψ, and the ratio of specimen thickness, h, and standoff distance, R. 

 5.05.2 *13613.0*01004.002511.0

1




R

h
   Equation 10 

 2*049265.0*144308.0028205.0

1




R

h
   Equation 11 

The measured experimental results are presented relative to the UFC formulations for 

spall and breach in Figure 15.  The expected and actual results are also summarized in 

Table 9 for all cases. 

 

Figure 15: Expected and Actual Results for Spall and Breach 
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The estimated performance was unconservative for the close-in detonations.  For the 2.5 

in. standoff the UFC formulations predict spall however all panels resulted in breach.  

The front face crater diameter was larger and the breach and protected face spall diameter 

were smaller as rubber replacement was increased.  For the standoff of 5 in, the 

experimental results on the CRC panels agreed with the predicted results.  Again the 

protected interior face damage decreased and the exterior damage increased with 

additions of rubber.   

Overall the spall and breach response observed were inconsistent.  This is likely due to 

the small sample size.  Nevertheless, the small study illustrates that although the 

compressive and tensile strength of the crumb rubber concrete are less than that of normal 

concrete, they have similar resistance against near field blast demands.  Given the lighter 

unit weight and lower strength of the crumb rubber concrete, energy dissipation 

enhancement must be inherent in CRC to result in similar performance. 

3.3 Ballistic penetration of CRC 

High velocity impact of primary fragments represents an important safety concern for 

building occupants.  Primary fragments are formed with the detonation of cased 

explosives.  These fragments are small in size and travel at velocities of several thousand 

feet per second.   Because of their small size and high velocities, primary fragments can 

have detrimental effects on barriers.  If fragments have enough energy, they can penetrate 

barriers, cause spalling on the interior face, or pass through (perforate).  Fragments 

passing through and spall caused by fragments present a danger to occupants of the 

structure. [UFC 3-340-02 2008] 
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The ballistic capacity of CRC was assessed to evaluate if the penetration resistance of 

concrete is enhanced by the addition of crumb rubber aggregate.  The resistance was 

examined by firing Fragment Simulating Projectiles (FSPs) at increasing velocities into 6 

in (150 mm) thick panels.  The depth of penetration (DOP) in the panels was measured.  

The ballistic resistance characteristics were compared to the performance of traditional 

concretes as predicted by three approaches.  The approaches include the UFC 3-340-02 

[2008], National Defense Research Committee (NDRC) [Kennedy, 1976], and Haldar 

[1984].   

3.3.1 Penetration Experiment Design 

In the DOP study three mix designs were examined: a 10%, 20%, and 40% coarse 

aggregate replacement.  For each of the three designs a constant fine aggregate 

replacement of 10% is used.  The compressive and tensile strengths of the materials were 

measured.  The material strengths are summarized in Table 1.  As discussed previously, 

the concrete strengths decrease with higher additions of rubber aggregate.   

A fragment simulating projectile (FSP) was used for the ballistic study to examine the 

resistance against mortar and rocket fragments.  A 207 grain FSP (Figure 16a) was 

determined to best represent the munitions and was chosen as the design fragment.  The 

FSPs were shot with a powder actuated 50 caliber 36 in. universal receiver (Figure 16b).  

The FSP impact velocity ranged from 1258 to 3680 ft/sec (383 to 1122 m/sec).  The 

specimens were evaluated in an environmentally controlled room maintained at 

approximately 50% relative humidity and 77° F (25° C) temperature.  The impact 
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velocities of the projectiles were measured using Oehler Model 35P chronographs with 

Oehler Model 57 infrared light screens.  

The setup is illustrated in Figure 16 b and c.  A 6 in (150 mm) thick panel size was 

chosen to prevent complete penetration of the fragments.  The crater diameter was 

measured on the face of the specimen to the outermost region of the crater (Figure 16d).  

Three measurements were taken diagonally across the crater zone and averaged.  The 

depth of penetration of the fragment was measured by placing a straight edge across the 

face and measuring the largest depth of the impact crater (Figure 16e).  In some cases the 

fragment was embedded in the specimen.  For these cases the fragment was removed and 

the depth to the bottom of the impact crater was taken. 

   

a) Design Fragment Simulating Projectile  b) Ballistic Range 
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c) Specimen Support    d) Crater Measurement 

 

                                  e) Depth Measurement 

Figure 16:  Ballistic range and setup (1 in = 2.54 cm) 

3.3.2 Experimental Results of Depth of Penetration Evaluation 

The impact velocity, front side crater diameter, and depth of penetration were measured 

for each impact.  The impact shape and sizes are illustrated in Figure 17.  The results are 
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graphically illustrated in Figure 18.  As illustrated increasing quantity of rubber 

replacement resulted in smaller crater size and greater depth of penetration. 

 

Figure 17 : Depth of Penetration Damage 

 

Figure 18:  Penetration diameter and depth of crumb rubber concrete (1 in = 2.54 

cm, 1 ft/sec = .205 m/sec) 
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3.3.3 Expected Results Based on Predictor Method 

The depth of penetration measured was compared with predictor methods.  Three 

predictive methods were used, the UFC 3-340-02, modified NDRC, and Haldar.  

Numerous formulae have been formulated to deal with depth of penetration.  The 

equations used represent three empirical formulae that are considered applicable today. 

[Bangash 2006]  Each equation relates the depth of penetration, Xf (in.), to the fragment 

velocity, Vs (fps), concrete compressive strength, f’c (psi), fragment weight, Wf (lbf), 

fragment diameter, d (in.), and a nose shape factor, N.  A nose shape factor of 0.918 was 

used as a conservative approximation of the fragment o-give.   

The UFC (3-340-02 2008) prediction, Equation 12 and Equation 13, includes two 

different equations depending on the ratio of the depth of penetration to the fragment 

diameter. 

 
dXVd

d

W
N

cf
xX fs

f

f 2
16

'

91.12
100.4

9.01.1

5.0

35.0

3 












    Equation 12 

 
dXdVd

d

W
N

cf
xX fs

f

f 2
16

'

91.12
100.4

8.12.1

35.0

6     Equation 13 

The modified NDRC prediction, Equation 14 and Equation 15, similarly includes two 

equations [Kennedy, 1976]. 

 
dX

d

V
NW
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dX fff 2
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
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
    Equation 14 
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 dXd
d

V
NW

cf
X fff 2

1000'

180
8.1

5.0









    Equation 15 

The Haldar prediction, Equation 17, Equation 18, and Equation 19, includes three 

equations depending on the impact factor, I, as defined in Equation 16 [Haldar, 1984]. 

 cfd

NVW
I

sf

'2.32 3

2

    Equation 16 

 
  0.43.02251.00308.0  IIdX f

   Equation 17 

 
  0.210.40567.06740.0  IIdX f

   Equation 18 

 
  0.4550.210299.01875.1  IIdX f

   Equation 19 

The comparison between the experimental results and the UFC, modified NDRC, and 

Haldar predictions are shown in Figure 19 for the 10%, 20% and 40% coarse aggregate 

replacement levels. 
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Figure 19: Depth of Penetration Comparison with Predictor Methods (1 in = 2.54 

cm, 1 ft/sec = .305 m/sec) 

The Haldar, UFC, and NDRC methods provide a conservative estimation of depth of 

penetration.  All three prediction methods were more accurate at lower fragment 

velocities.  The percent error was calculated comparing the actual results and those 

predicted by the NDRC equation (NDRC was used because it gave the nearest 

approximation).  The average percent error for the 10%, 20%, and 40% coarse 

replacement is 28.72%, 22.13%, and 37.13% respectively.  Although the panels with 

more CRC resulted in a greater depth of penetration, the difference between the 

experimental depth and predicted depth was greater for higher levels of CRC.  This result 

suggests that the rubber has some characteristics that increase ballistic capacity. 

As discussed previously, an increase in crumb rubber decreases the density of the 

concrete.   For a given weight, a CRC specimen would have more thickness then a 
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concrete specimen without rubber.  Clearly, this increased thickness would have a 

positive effect on the ballistic capacity of the specimen.  The additional thickness would 

not change the depth of penetration as calculated above, however the additional thickness 

represents additional depth the fragment must penetrate to break through the specimen.  

In this way, when weight is the normalizing factor, a CRC specimen has improved 

ballistic resistance over conventional concrete. 

3.4 Ballistic Perforation of CRC 

The ballistic perforation of CRC was examined in accordance with the Department of 

Defense Test Method Standard V50 Ballistic Test For Armor [DoD 1997].  The method 

determines the velocity, V50, at which a given fragment will penetrate armor 50% of the 

time.  The perforation resistance characteristics were compared to the performance of 

traditional concretes as predicted by the UFC 3-340-02 [2008]. 

3.4.1 Perforation Test 

For the V50 study 20% and 40% coarse aggregate replacements are compared with a 0% 

replacement control.  The control is tested at two ages to examine the resistance at a low 

and high compressive strength.  The panels used for the ballistic study do not include fine 

rubber aggregate.  The material strengths are summarized in Table 1. 

As with the DOP study previously described, the performance is assessed relative to a 

207 grain FSP.  Two panel thicknesses, 2 in. and 3 in. (50.8 mm, 76.2 mm), were 

examined for the study.  The surface of the panels measured 2 ft (0.61 m) tall by 1.5 ft 
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(0.46 m) wide.  Several panels were fabricated for each mix design to provide enough 

samples to adequately determine one V50 point.   

The V50 velocity was determined by taking the average of an equal number of highest 

partial penetration velocities and the lowest complete penetration velocities which occur 

within a specified velocity spread.  Four shots with a velocity spread of 60 fps (18.3 

m/sec) or six shots with a velocity spread of 90 fps (27.4 m/sec) were used to determine 

V50.  Complete penetration occurs when the fragment or pieces of the panel are ejected 

from the protected face and result in perforation of a witness panel located 6.5 in. (165.1 

mm) from the rear of the specimen.  Perforation was determined by holding up the panel 

to a 60 Watt bulb and inspecting for light passage.  The witness panel consisted of a 

0.020 in. (0.51 mm) thick sheet of 2024 T3 aluminum.  Partial penetration refers to 

anything less than complete penetration.  All tests were conducted in an environmentally 

controlled testing facility.  The average condition at time of testing was 77ºF and 47% 

relative humidity. 

3.4.2 Results of V50 Study 

The measured V50 for the four concrete mixes are summarized in Table 10.  The results 

are presented graphically in Figure 20.  The V50 is presented relative to the panel 

thickness and areal density.  The areal density is a measure of weight of the panel per unit 

surface area.  This measure is often used to compare the ballistic efficiency of the system 

with alternate materials.   
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Table 10:  V50 results 

Coarse Aggregate 

Replacement [%] 

Panel 

Thickness 

[in. (cm)] 

Areal 

Density 

[lb/sq.ft. 

(kPa)] 

Est. 

Compressive 

Strength [psi 

(MPa)] 

V50 

[ft/sec 

(m/s)] 

Expected 

Velocity 

[ft/sec, 

(m/s)] 

40% 3 (7.62) 

32.24 

(1.548) 2610 (17.99) 

2818 

(859) 

2161 

(659) 

40% 2 (5.08) 

20.94 

(1.003) 2610 (17.99) 

1601 

(488) 

1086 

(331) 

20% 3 (7.62) 

34.31 

(1.643) 5107 (35.21) 

2811 

(857) 

2603 

(793) 

20% 2 (5.08) 

21.85 

(1.046) 5093 (35.11) 

1561 

(478) 

1308 

(399) 

0% 3 (7.62) 

37.36 

(1.789) 8195 (56.50) 

3118 

(950) 

2970 

(905) 

0% 2 (5.08) 

24.32 

(1.164) 8195 (56.50) 

1753 

(534) 

1493 

(455) 

0% 3 (7.62) 
37.79 

(1.809) 
3365 (23.20) 

3315 

(1010) 

2319 

(707) 

0% 2 (5.08) 
24.67 

(1.181) 
3365 (23.20) 

1641 

(500) 

1166 

(355) 
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Figure 20:  Ballistic resistance of crumb rubber concrete 
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3.4.3 Estimated Ballistic Penetration Resistance 

The perforation resistance of the panels are compared to UFC 3-340-02 [DoD 2008] 

predictions.  Perforation thickness of a given concrete type is computed from the depth of 

penetration calculations previously conducted.  The minimum concrete thickness to 

prevent perforation, Tpf, is presented in Equation 20.  It is based on the corrected depth of 

penetration, Xf, as found by Equations 12 and 13 and the fragment diameter, d.   

 
ddXT fpf 311.113.1 1.0     Equation 20 

The fragment velocities at which the 2 and 3 in. thick panels would be sufficient to 

prevent perforation were calculated with Equations 12, 4, and 5. The results are found in 

Table 10.  Figure 21 presents a comparison between the expected results from equation 9 

and the experimental V50 results.  
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Figure 21: V50 expected and actual results 

The use of crumb rubber decreases the ballistic stopping capability when compared to an 

equivalent thickness of conventional concrete as illustrated in Figure 20.  However when 

weight is a limiting factor, CRC exhibits an improvement over conventional concrete.  

The unit weight of CRC is lower than standard concrete.  When comparing the ballistic 

resistance to the areal density, Figure 20 indicates that CRC exhibits an improvement 

over conventional concrete. 

The comparison between the experimental results and expected results based on 

published equations indicates that standard equations are fairly accurate, though the UFC 

equation overestimates the effects of compressive strength.  The percent error was 

calculated comparing the actual results and those predicted by the UFC equation.  The 

average percent error for the 0% (f’c of 8195 psi), 20% (f’c of 5100 psi), 0% (f’c of 3365 

0

500

1000

1500

2000

2500

3000

3500

0 2500 5000 7500 10000

V
el

o
ci

ty
 [

ft
/s

ec
]

Compressive Stress [psi]

4
0

%
 f

'c
=

2
.6

 k
si

0
%

 f
'c

=
8

.2
 k

si

2
0

%
 f

'c
=

5
.1

 k
si

0
%

 f
'c

=
3

.4
 k

si

3in.

(75mm)
Panel

2in.

(50mm)
Panel



www.manaraa.com

51 

 

psi), and 40% (f’c of 2610 psi) coarse replacement is -7.24%, -5.16%, 19.23%, and 

15.76% respectively.   The difference between expected and actual is small for the panels 

with higher compressive strength.  The equation is also unconservative for the high 

compressive strengths.  The accuracy of the equation for low compressive strengths is 

much lower, though it is conservative.  The UFC equations are less accurate for 

increasing levels of CRC replacement, however it appears that the cause of the poor 

accuracy is the low level of compressive strength as opposed to the ballistic resistance of 

the CRC.  However, independent of the cause, the use of CRC does not decrease the 

perforation resistance as much as is expected by the equations in the UFC. 

3.5 Conclusions 

Research has shown that Portland cement concrete utilizing shredded vehicle tires for a 

partial aggregate replacement is effective in providing energy absorbing enhancements.  

To examine if these capabilities are useful for military applications crumb rubber 

concrete is examined against blast and ballistic demands.  CRC is studied for spall and 

breach resistance against near field detonation of high explosives and ballistic penetration 

and perforation resistance against small mass fragments.  The effectiveness of CRC is 

compared to control concrete mixes and to predictive formulations.  The results of the 

study are summarized as follows: 

  



www.manaraa.com

52 

 

3.5.1 Spall and Breach Resistance 

 The results indicate that an increase in rubber replacement results in an increase in the 

crater diameter and depth of spall on the exterior face and a decrease in the breach and 

spall diameter on the protected face.   

 The UFC spall and breach predictive equations were unconservative in four of the nine 

close-in detonations conducted.   

 While additional tests may be warranted to assess the reproducibility of the results, the 

improvements in spall and breach resistance provided by CRC was minimal. 

3.5.2 Ballistic Penetration Resistance 

 Ballistic penetration tests using a 207 grain FSP indicates that an increase in rubber 

coarse aggregate reduces the ballistic resistance of concrete.  Increases in the depth of 

penetration were observed for higher rubber replacements and were attributed to the 

corresponding reduction in concrete compressive strength. 

 Three methods for predicting depth of penetration were examined.  All three methods 

gave conservative results for all data points collected.  The NDRC method provides the 

nearest prediction to the actual results followed by the UFC and Haldar methods.   

 All three prediction methods showed improved accuracy at lower impact velocities.  

Although the panels with more CRC resulted in a greater depth of penetration, the 

difference between the experimental depth and predicted depth was greater for higher 

levels of CRC.  This result suggests that the rubber has some characteristics that increase 

ballistic capacity. 



www.manaraa.com

53 

 

3.5.3 Ballistic Perforation Resistance 

 The use of crumb rubber decreases the ballistic stopping capability when compared to an 

equivalent thickness of conventional concrete. 

 When comparing the ballistic resistance to the areal density, CRC exhibits an 

improvement over conventional concrete. 

 The comparison between the experimental results and expected results based on 

published equations indicates that standard equations are conservative for lower levels of 

compressive stress.  This means that the use of CRC does not decrease the perforation 

resistance as much as is expected by the equations in the UFC. 

The results indicate that CRC replacement decreases the resistance of concrete to brittle 

mode response for blast design.  However, comparison with predictor equations suggests 

that the decrease is less than what might be expected from concrete with similar 

compressive strength.  That is, although the addition of CRC to concrete decreases the 

compressive strength of the concrete, it decreases the brittle mode blast resistance less.  

The addition of crumb rubber does increase the brittle mode failure blast resistance just 

not enough to outweigh the accompanying decrease in compressive and tensile strength 

of the concrete. 

The ballistic resistance of CRC shows an interesting trend when examined as a function 

of unit weight.  Traditionally rubber aggregate is included as a volume replacement of 

standard concrete coarse aggregate.  Consequently, the resulting unit weight of CRC is 

lower than standard concrete.  The improvement in ballistic capability relative to areal 

density indicates that CRC may be advantageous when weight is an issue.  The relative 
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weight of the material needed to stop a particular threat is lower than that of conventional 

concrete.   

It is important to consider that the improvement is provided even though the material 

strength is considerably lower.  To achieve comparable ballistic resistance with a 

considerably lower strength indicates that the rubber provides some damping 

enhancements when ballistic impacts are a concern.  It is possible that with appropriate 

choices of rubber constitutive properties and gradation, further enhancements can be 

achieved.  Further study of the ballistic properties is warranted. 
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Chapter 4: Spall and Breach of a Concrete Panel in 

LS-Dyna 

A finite element model of the spall and breach test from section 3.2 was completed in the 

finite element program LS-Dyna.  Models were completed for only the 0% rubber 

replacement members and were completed for the 2.5in, 5in, and 9in standoff distances.  

The finite elements models were made to compare the experimental results and the 

expectations that were calculated using the UFC equations.  The reliability of these 

findings may be validated further using a finite element model.  The model also offers an 

opportunity to examine the effectiveness of LS-Dyna for such brittle mode response blast 

load problems such as the one being tested. 

4.1 Model Overview 

The Concrete panel geometry was modeled as a 3-Dimensional box with dimensions 

matching the experimental members, 42 in. x 42 in. x 6 in..  The model was generated 

with 0.5 in. cubic elements.  The cubic elements chosen were constant stress solid 

elements with nodes at the corners and 6 DOF per node.  This geometry results in a 

model that includes 84,672 elements, 93,925 nodes, and 563,550 DOF.  Figure 22 depicts 

the basic model in the LS-Dyna interface. 
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Figure 22: LS-Dyna Concrete Panel Model 

The boundary conditions were chosen to resemble those of the experiment.  Translation 

in the vertical direction was supported at every node along the bottom edge.  The 

experiment did not include any secure horizontal supports, however friction was 

sufficient to hold the panels in place during the experiment.  For this reason, to prevent 

free motion horizontally, the x direction of displacement was supported at every node 

along one edge, and the y direction of displacement was supported at every node along an 

adjacent edge.  This introduces a lack of symmetry into the model, but that is acceptable 

for a basic spall and breach model. 
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The material that was used to model concrete in LS-Dyna is Material 159 – CSCM 

Concrete.  CSCM Concrete requires input values for compressive strength, f‟c, maximum 

aggregate size, and mass density.  Values entered were f‟c = 5559 psi, maximum 

aggregate size of 0.75in, and mass density of 0.087 lbs / in.
3
.  The CSCM concrete 

material uses these three input values to find all other necessary values such as tensile 

strength and modulus of elasticity.  A more comprehensive material exists in LS-Dyna 

that allows the user to enter values for these properties as well as many others, however 

for this initial investigation it was decided that the standard CSCM Concrete material 

would be sufficient. 

Additionally the material model includes an “ERODE” option.  Erode causes elements to 

lose all stiffness and strength after a threshold amount of damage is achieved.  Both 

brittle (tensile) and ductile (compressive) damage is considered for the erode option.  An 

element erodes if the accumulated damage parameter exceeds 0.99 and a maximum 

principal strain value is exceeded.  To simplify the evaluation an erode value of 1.00 is 

used in the analysis.  For this case the max principal strain check is not used and instead 

the elements erode when the damage parameter exceeds 0.99.  Eroded elements for the 

spall and breach case that was tested would represent the area of spall/breach.  In this 

way the model does not show the spalled concrete detach from the member at some 

velocity, but rather just shows the damage crater that exists after spall occurs. 

The experimental model includes a small amount of rebar.  The rebar included in the 

experiment to prevent temperature or shrinkage damage to the panels prior to testing.  

The effects of the rebar on the capacity of the concrete to withstand the blast without 
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spall or breach was considered negligible in the experiment.  For this reason no rebar was 

included in the finite element model. 

The load caused by the 2 lb C-4 detonation was modeled in LS-Dyna using the Blast 

Load function.  The Blast Load function allows the user to input the equivalent TNT 

mass of the charge, and the location of the charge.  Using this information the pressure 

load on the chosen member face is applied directly.  The input for this model was 

equivalent mass equal to 0.00622 dozens of slugs, and at three locations: 2.5 in., 5 in., 

and 9 in. away from the face of the member in the vertical direction and centered on the 

panel horizontally. 

4.2 Model Results 

Time history data was produced from the model for the three standoff distances.  Data 

was taken every 0.001 seconds until a time of 0.1 second.  The spall occurred within the 

first 0.01 seconds for each model.  The results are illustrated in Figure 23 and Table 11 .  

These results are taken at a time of 0.1 seconds after detonation, and show the erosion 

damage of the panels. 
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A) 2.5 in Standoff 

 

Top      Bottom 

B) 5in Standoff 

 

Top      Bottom 

C) 9in Standoff 
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Figure 23: LS-Dyna Spall Erosion Results 

Table 11:  Spall and breach performance (1 in = 2.54 cm) 

Standoff 
[in.] 

Experimental 
LS-Dyna Model 

Front 
Face 

Crater 

Dia. 
[in.] 

Protected 

Face Spall 
Dia. [in.] 

Protected 

Face 

Depth of 
Spall [in.] Result 

Front 

Face 

Crater 
Dia. [in.] 

Protected 

Face Spall 
Dia. [in.] 

Protected 

Face 

Depth of 
Spall [in.] 

Interior 

Damage 

Diameter 
[in.] Result 

2.5 16.719 29.000 Breach Breach 7 10 1.5 18 Spall 

5 5.750 22.625 3.625 Spall NA 12 1.5 21 Spall 

9 4.625 1.625 0 
No 

Damage 
NA 11 1 20 Spall 

 

The results indicate that spall occurred on the panel for each standoff distance.  The depth 

of the spall increased as the standoff distance became smaller in the three models.  The 

model that included the 9in standoff did not include damage on the front face.  The other 

two models included damage on the front face and the model with a 2.5 in standoff 

clearly showed more damage to the front face than the model with the 5 in standoff 

(limited damage with no crater).  The spall diameters and interior damage diameters did 

not show a significant trend.  For all three tests these two properties were clumped around 

10 in and 20 in respectively. 

4.3 Conclusions 

The results of the finite element analysis are on the same order as the results found from 

experimentation and those found from the UFC equations.  Although the results are not 

matched exactly, certain trends that were expected occurred in the finite element model.  
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Front face damage was clearly more likely for closer standoff distances as expected.  

Spall depth damage was larger for a closer standoff distance as well.  However, the spall 

diameter and interior damage data found does not agree with what was expected.  Clearly 

there is room for improvement with the finite element model. 

From the given model it is not clear how the blast load is applied to the panel.  The way 

the blast load is modeled may not be accurate for all loading scenarios such as this one 

with such a close-in blast.  Also the way the erosion works may have introduced error in 

to the model.  A large amount of interior damage was found in the model causing erosion 

of interior elements.  Although failure stress may have occurred on the interior of the 

actual experimental elements, the same type of erosion does not occur.  This likely had a 

significant effect on the spall diameters and any damage that did not occur at the time of 

first damage. 

The variability that exists in spall and breach testing and calculations makes it unlikely 

that a finite element model would exactly match results found from an experiment, but 

the results are on the same order and show many similarities.  More work should be done, 

specifically focusing on the material erosion and application of the blast load, however 

the early finite element results are promising. 
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